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Efficient access to chiral N-substituted saccharin analogues via
the directed ortho-lithiation of 3-N-arylsulfonyloxazolidin-2-ones
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Abstract—Chiral 3-N-arylsulfonyloxazolidin-2-ones 1a–f, prepared from (LL)-amino acids, were reacted with lithium diisopropyl-
amide in anhydrous THF and HMPA. The resulting new, optically active benzisothiazolinone 1,1-dioxides 2a–c and naphthisothi-
azolinone 1,1-dioxides 2d–f were obtained in good yields.
� 2006 Elsevier Ltd. All rights reserved.
Heterocycles incorporating a sulfamido moiety have been
reported to possess a variety of interesting biological
activities.1 For example, aminothiadiazole 1,1-dioxides
have shown antihypertensive and vasodilating proper-
ties.2 Many reports have referred to the anti-inflamma-
tory, analgesic and antipyretic activities found for a
variety of 1,2-benzothiazine 1,1-dioxides.3 Special men-
tion should be made of benzisothiazolinone 1,1-dioxides,
which demonstrate a wide range of biological activities,
such as antifungal,4 anti-inflammatory,5 inhibition of
human leukocyte elastase (HLE)6,7 and inhibition of
aldehyde dehydrogenase.8

Due to the important biological activities of benzisothi-
azoline 1,1-dioxides, many publications have presented
interesting methods for their syntheses, including N-alkyl
(o-methyl)arenesulfamides via sulfonamidyl radicals,9

Diels–Alder cycloaddition,10 from benzoxathiole deriva-
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tives and amino acids,11 and via ortho-lithiation reac-
tions.12,13 In addition, a few asymmetric syntheses of
benzisothiazoline 1,1-dioxide derivatives have been
described in the literature.

As part of our continued efforts to develop synthetically
useful anionic aromatic reactions for the synthesis of
biologically active compounds,14,15 we report, in this
letter, a general route to benzisothiazolinone 1,1-di-
oxides 2a–c and naphthisothiazolinone 1,1-dioxides 2d–f
based on directed ortho-metalation (Scheme 1). These
heterocycles are analogues of saccharin derivatives and
were required for the evaluation of biological activities
and as starting materials to prepare potential new drugs.

The aromatic directed ortho-metalation reaction16 has
been developed into a broadly useful protocol for the reg-
ioselective construction of polysubstituted aromatic
-dioxides.
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compounds and has been used in the efficient synthesis of
several heterocyclic ring systems and bioactive mole-
cules.16,17 Sulfonamides constitute powerful but undevel-
oped directing groups.18 Hauser first demonstrated the
metalation of secondary and tertiary arylsulfonamides
and then described the synthesis of heteroannelation
products.13,19–21 Also, intramolecular anionic Fridel–
Crafts equivalent condensation of arylsulfonylamides
has been described by Snieckus and his group.22–25 The
process reported herein, possibly driven by complex
induced proximity effects (CIPE),26,27 constitutes a mild
method for the LDA–HMPA mediated regiospecific con-
version of N-arylsulfonyloxazolidin-2-ones 1a–f readily
available from optically pure amino acids28 into novel
chiral analogues of saccharins 2a–f (Table 1).

Initially, an investigation of the optimum reaction
conditions for the synthesis of compounds 2a–f was
Table 1. Cyclisation of 3-N-arylsulfonyloxazolidin-2-ones 1a–f35

Entry R Ar [a]D

Temp

2a Me C6H5 +45 �78
�78

2b s-Bu C6H5 �53.57 �78
2c Bn C6H5 �55.0 �78
2d Me 2-Naphthyl +40 �78
2e s-Bu 2-Naphthyl +38 �78
2f i-Pr 2-Naphthyl +55.55 0

�78
2g i-Pr p-H3C–C6H4 — �78

�78
0

n.r.: No reaction.
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Figure 1.
undertaken. Thus, treatment of N-arylsulfonyloxazol-
idin-2-ones 1a–g with different equivalents of LDA at
low temperature failed, in all cases, to bring about the
reaction. Regioselectivity in ortho-metalation reactions
is influenced by additives29 and by variation of the meta-
lating agent.30 To explore the effect of additives,
compounds 1a–f were treated with LDA/HMPA
(THF/�78 �C) followed by quenching with NH4Cl to
afford the corresponding enantiomerically pure benziso-
thiazolinone 1,1-dioxides 2a–c and naphthisothiazoli-
none 1,1-dioxides 2d–f (Scheme 1)31 with yields ranging
between 65% and 71%. No reaction occurred when we
replaced HMPA with TMEDA. Although lateral meta-
lation20,32 has been reported for o-tolylsulfonamide,
p-tolylcarbamide,30 p-tolylsulfonates33 and p-tolylsulf-
onamide34 also undergo benzylic deprotonation. These
results suggest that for 1g, under our metalation condi-
tions, deprotonation occurred selectively at the benzylic
position (Fig. 1).

Theoretically, ortho-lithiation of 3-N-(2-naphthylsulfon-
yl)oxazolidin-3-one could occur on C1 or C3 of the
naphthalene ring. Characterisation of the reaction prod-
uct proved the cyclisation of substrates 1d–f to the
regioisomers 2d–f, exclusively (Scheme 2).

In summary, chiral N-substituted analogues of saccha-
rin derivatives could be readily prepared from inexpen-
Typical conditions Mp (�C) Yield (%)

erature (�C) Additive

HMPA 132–134 69
TMEDA — n.r.
HMPA 73–75 65
HMPA 107–109 71
HMPA 156–158 65
HMPA 141–143 65
HMPA 99–101 62
HMPA 67
HMPA — n.r.
TMEDA — n.r.
TMEDA — n.r.
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sive and readily available materials. This method ap-
pears more convenient than an earlier one employed
for the preparation of chiral saccharins.11 Investigation
of the biological activities of these new compounds is
underway.
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